Bitget App
スマートな取引を実現
暗号資産を購入市場取引先物BotsBitget Earnコピートレード
Bonk on ETHの価格

Bonk on ETHの‌価格BONK

focusIcon
subscribe
未上場
決済通貨:
JPY
データはサードパーティプロバイダーから入手したものです。このページと提供される情報は、特定の暗号資産を推奨するものではありません。上場されている通貨の取引をご希望ですか?  こちらをクリック

Bonk on ETHに投票しましょう!

IconGood良いIconBad悪い
注:この情報はあくまでも参考情報です。

今日のBonk on ETHの価格

Bonk on ETH の今日の現在価格は、(BONK / JPY)あたり¥0.{7}7929 で、現在の時価総額は¥0.00 JPYです。24時間の取引量は¥0.00 JPYです。BONKからJPYの価格はリアルタイムで更新されています。Bonk on ETH は-1.49%過去24時間で変動しました。循環供給は0 です。

BONKの最高価格はいくらですか?

BONKの過去最高値(ATH)は2024-05-11に記録された¥0.{5}8822です。

BONKの最安価格はいくらですか?

BONKの過去最安値(ATL)は2025-03-30に記録され¥0.{7}7768です。
Bonk on ETHの利益を計算する

Bonk on ETHの価格予測

2026年のBONKの価格はどうなる?

BONKの過去の価格パフォーマンス予測モデルによると、BONKの価格は2026年に¥0.{6}1038に達すると予測されます。

2031年のBONKの価格はどうなる?

2031年には、BONKの価格は+40.00%変動する見込みです。 2031年末には、BONKの価格は¥0.{6}1726に達し、累積ROIは+117.66%になると予測されます。

Bonk on ETHの価格履歴(JPY)

Bonk on ETHの価格は、この1年で-96.32%を記録しました。直近1年間のJPY建ての最高値は¥0.{5}8822で、直近1年間のJPY建ての最安値は¥0.{7}7768でした。
時間価格変動率(%)価格変動率(%)最低価格対応する期間における{0}の最低価格です。最高価格 最高価格
24h-1.49%¥0.{7}7768¥0.{7}7939
7d-10.32%¥0.{7}7768¥0.{7}8916
30d-8.15%¥0.{7}7768¥0.{6}1112
90d-81.50%¥0.{7}7768¥0.{6}4319
1y-96.32%¥0.{7}7768¥0.{5}8822
すべての期間-96.32%¥0.{7}7768(2025-03-30, 昨日 )¥0.{5}8822(2024-05-11, 325 日前 )

Bonk on ETHの市場情報

Bonk on ETHの時価総額の履歴

時価総額
--
完全希薄化の時価総額
¥7,928,904.04
マーケットランキング
暗号資産を購入

Bonk on ETHの集中度別保有量

大口
投資家
リテール

Bonk on ETHの保有時間別アドレス

長期保有者
クルーザー
トレーダー
coinInfo.name(12)のリアル価格チャート
loading

Bonk on ETHの評価

コミュニティからの平均評価
4.4
100の評価
このコンテンツは情報提供のみを目的としたものです。

Bonk on ETHのニュース

BONKが上昇、ソラナ系コインが仮想通貨 プレセールで42億円調達
BONKが上昇、ソラナ系コインが仮想通貨 プレセールで42億円調達

Cryptonewsは、10年以上にわたる暗号資産(仮想通貨)の報道経験に裏付けされた、信頼に足る洞察を提供しています。経験豊富なジャーナリストやアナリストが、深い知識を駆使し、ブロックチェーン技術を実際に検証しています。厳格な編集ガイドラインを遵守し、仮想通貨プロジェクトについて、正確かつ公正な報道を徹底しています。長年の実績と質の高いジャーナリズムへの取り組みにより、Cryptonewsは暗号資産市場の信頼できる情報源となっています。会社概要も併せてご覧ください。 広告開示私たちは、読者の皆様に対し、完全な透明性を提供することを重要視しています。当サイトの一部のコンテンツにはアフィリエイトリンクが含まれており、これらのリンクを通じて発生した取引に基づき、当社が手数料を受け取る場合がございます。

CryptoNews2025-03-27 20:11
Bonk on ETHの最新情報

よくあるご質問

Bonk on ETHの現在の価格はいくらですか?

Bonk on ETHのライブ価格は¥0(BONK/JPY)で、現在の時価総額は¥0 JPYです。Bonk on ETHの価値は、暗号資産市場の24時間365日休みない動きにより、頻繁に変動します。Bonk on ETHのリアルタイムでの現在価格とその履歴データは、Bitgetで閲覧可能です。

Bonk on ETHの24時間取引量は?

過去24時間で、Bonk on ETHの取引量は¥0.00です。

Bonk on ETHの過去最高値はいくらですか?

Bonk on ETH の過去最高値は¥0.{5}8822です。この過去最高値は、Bonk on ETHがローンチされて以来の最高値です。

BitgetでBonk on ETHを購入できますか?

はい、Bonk on ETHは現在、Bitgetの取引所で利用できます。より詳細な手順については、お役立ちの購入方法 ガイドをご覧ください。

Bonk on ETHに投資して安定した収入を得ることはできますか?

もちろん、Bitgetは戦略的取引プラットフォームを提供し、インテリジェントな取引Botで取引を自動化し、利益を得ることができます。

Bonk on ETHを最も安く購入できるのはどこですか?

戦略的取引プラットフォームがBitget取引所でご利用いただけるようになりました。Bitgetは、トレーダーが確実に利益を得られるよう、業界トップクラスの取引手数料と流動性を提供しています。

暗号資産はどこで購入できますか?

Bitgetアプリで暗号資産を購入する
数分で登録し、クレジットカードまたは銀行振込で暗号資産を購入できます。
Download Bitget APP on Google PlayDownload Bitget APP on AppStore
Bitgetで取引する
Bitgetに暗号資産を入金し、高い流動性と低い取引手数料をご活用ください。

動画セクション - 素早く認証を終えて、素早く取引へ

play cover
Bitgetで本人確認(KYC認証)を完了し、詐欺から身を守る方法
1. Bitgetアカウントにログインします。
2. Bitgetにまだアカウントをお持ちでない方は、アカウント作成方法のチュートリアルをご覧ください。
3. プロフィールアイコンにカーソルを合わせ、「未認証」をクリックし、「認証する」をクリックしてください。
4. 発行国または地域と身分証の種類を選択し、指示に従ってください。
5. 「モバイル認証」または「PC」をご希望に応じて選択してください。
6. 個人情報を入力し、身分証明書のコピーを提出し、自撮りで撮影してください。
7. 申請書を提出すれば、本人確認(KYC認証)は完了です。
Bitgetを介してオンラインでBonk on ETHを購入することを含む暗号資産投資は、市場リスクを伴います。Bitgetでは、簡単で便利な購入方法を提供しており、取引所で提供している各暗号資産について、ユーザーに十分な情報を提供するよう努力しています。ただし、Bonk on ETHの購入によって生じる結果については、当社は責任を負いかねます。このページおよび含まれる情報は、特定の暗号資産を推奨するものではありません。

Bitgetインサイト

Crypto_inside
Crypto_inside
2時
What is IQ..🤔🤔??
Intelligence Quotient (IQ) is a score derived from standardized tests designed to measure human intelligence. IQ tests assess various cognitive abilities, such as: Components of IQ Tests: 1. Verbal Comprehension: Measures ability to understand and use language. 2. Perceptual Reasoning: Assesses ability to reason, form concepts, and solve problems. 3. Working Memory: Evaluates ability to hold and manipulate information in short-term memory. 4. Processing Speed: Measures ability to quickly and accurately process visual information. IQ Score Interpretation: 1. Average IQ: 85-115 (68% of population) 2. Above Average IQ: 116-130 (16% of population) 3. Gifted IQ: 131-145 (2% of population) 4. Highly Gifted IQ: 146-160 (0.1% of population) 5. Profoundly Gifted IQ: 161-175 (0.01% of population) Criticisms and Limitations of IQ Tests: 1. Cultural Bias: IQ tests may favor certain cultural or socioeconomic groups. 2. Narrow Scope: IQ tests only measure specific aspects of intelligence. 3. Context-Dependent: IQ scores can be influenced by environmental factors. 4. Oversimplification: IQ scores can oversimplify complex cognitive abilities. Types of Intelligence: 1. Fluid Intelligence: Ability to reason, think abstractly, and solve problems. 2. Crystallized Intelligence: Ability to use learned knowledge and experience. 3. Emotional Intelligence: Ability to recognize and understand emotions. Notable Theories and Models: 1. Gardner's Multiple Intelligences: Proposes multiple types of intelligence, such as linguistic, spatial, and bodily-kinesthetic. 2. Sternberg's Triarchic Theory: Suggests three components of intelligence: analytical, creative, and practical. IQ tests provide a limited snapshot of cognitive abilities and should not be considered the sole measure of intelligence or potential. Thank you...🙂 $BTC $ETH $SOL $PI $AI $XRP $BGB $BNB $ONDO $DOGE $SHIB $BONK $FLOKI $U2U $WUF $PARTI $WHY $SUNDOG
SUNDOG-0.18%
BTC+1.82%
Crypto_inside
Crypto_inside
2時
Machine learning ❌ Traditional learning. 🧐😵‍💫
Machine learning and traditional learning are two distinct approaches to learning and problem-solving. Traditional Learning: 1. Rule-based: Traditional learning involves explicit programming and rule-based systems. 2. Human expertise: Traditional learning relies on human expertise and manual feature engineering. 3. Fixed models: Traditional learning uses fixed models that are not updated automatically. Machine Learning: 1. Data-driven: Machine learning involves learning from data and improving over time. 2. Algorithmic: Machine learning relies on algorithms that can learn from data and make predictions. 3. Adaptive models: Machine learning uses adaptive models that can update automatically based on new data. Key Differences: 1. Learning style: Traditional learning is rule-based, while machine learning is data-driven. 2. Scalability: Machine learning can handle large datasets and complex problems, while traditional learning is limited by human expertise. 3. Accuracy: Machine learning can achieve higher accuracy than traditional learning, especially in complex domains. Advantages of Machine Learning: 1. Improved accuracy: Machine learning can achieve higher accuracy than traditional learning. 2. Increased efficiency: Machine learning can automate many tasks, freeing up human experts for more complex tasks. 3. Scalability: Machine learning can handle large datasets and complex problems. Disadvantages of Machine Learning: 1. Data quality: Machine learning requires high-quality data to learn effectively. 2. Interpretability: Machine learning models can be difficult to interpret and understand. 3. Bias: Machine learning models can perpetuate biases present in the training data. When to Use Machine Learning: 1. Complex problems: Machine learning is well-suited for complex problems that require pattern recognition and prediction. 2. Large datasets: Machine learning can handle large datasets and identify trends and patterns. 3. Automating tasks: Machine learning can automate many tasks, freeing up human experts for more complex tasks. When to Use Traditional Learning: 1. Simple problems: Traditional learning is well-suited for simple problems that require explicit programming and rule-based systems. 2. Small datasets: Traditional learning is suitable for small datasets where machine learning may not be effective. 3. Human expertise: Traditional learning relies on human expertise and manual feature engineering, making it suitable for domains where human expertise is essential. Thank you...🙂 $BTC $ETH $SOL $PI $AI $XAI $BGB $BNB $DOGE $DOGS $SHIB $BONK $MEME $XRP $ADA $U2U $WUF $PARTI $WHY
BTC+1.82%
BGB+4.28%
Crypto_inside
Crypto_inside
2時
What is Q-learning...🤔🤔??
Q-learning is a type of reinforcement learning algorithm used in machine learning and artificial intelligence. It's a model-free, off-policy learning algorithm that helps agents learn to make decisions in complex, uncertain environments. Key Components: 1. Agent: The decision-maker that interacts with the environment. 2. Environment: The external system with which the agent interacts. 3. Actions: The decisions made by the agent. 4. Rewards: The feedback received by the agent for its actions. 5. Q-function: A mapping from states and actions to expected rewards. How Q-learning Works: 1. Initialization: The agent starts with an arbitrary Q-function. 2. Exploration: The agent selects an action and observes the resulting state and reward. 3. Update: The agent updates its Q-function based on the observed reward and the expected reward for the next state. 4. Exploitation: The agent chooses the action with the highest Q-value for the current state. Advantages: 1. Simple to implement: Q-learning is a straightforward algorithm to understand and code. 2. Effective in complex environments: Q-learning can handle complex, dynamic environments with many states and actions. Disadvantages: 1. Slow convergence: Q-learning can require many iterations to converge to an optimal policy. 2. Sensitive to hyperparameters: The performance of Q-learning is highly dependent on the choice of hyperparameters. Q-learning is a powerful algorithm for reinforcement learning, but it can be challenging to tune and may not always converge to an optimal solution. Thank you...🙂 $BTC $ETH $SOL $PI $AI $XAI $XRP $BGB $BNB $DOGE $DOGS $SHIB $BONK $FLOKI $U2U $WUF $WHY $SUNDOG $COQ $PEPE
SUNDOG-0.18%
BTC+1.82%
Crypto_inside
Crypto_inside
3時
What is Machine learning..🤔🤔??
Machine learning is a subset of artificial intelligence (AI) that involves training algorithms to learn from data and make predictions, decisions, or recommendations without being explicitly programmed. Key Characteristics: 1. Learning from data: Machine learning algorithms learn patterns and relationships in data. 2. Improving over time: Machine learning models improve their performance as they receive more data. 3. Making predictions or decisions: Machine learning models make predictions, decisions, or recommendations based on the learned patterns. Types of Machine Learning: 1. Supervised Learning: The algorithm learns from labeled data to make predictions. 2. Unsupervised Learning: The algorithm learns from unlabeled data to identify patterns. 3. Reinforcement Learning: The algorithm learns through trial and error to achieve a goal. 4. Semi-supervised Learning: The algorithm learns from a combination of labeled and unlabeled data. 5. Deep Learning: A subset of machine learning that uses neural networks with multiple layers. Machine Learning Applications: 1. Image Recognition: Image classification, object detection, and facial recognition. 2. Natural Language Processing (NLP): Text classification, sentiment analysis, and language translation. 3. Speech Recognition: Speech-to-text and voice recognition. 4. Predictive Analytics: Forecasting, regression, and decision-making. 5. Recommendation Systems: Personalized product recommendations. Machine Learning Algorithms: 1. Linear Regression: Linear models for regression tasks. 2. Decision Trees: Tree-based models for classification and regression. 3. Random Forest: Ensemble learning for classification and regression. 4. Support Vector Machines (SVMs): Linear and non-linear models for classification and regression. 5. Neural Networks: Deep learning models for complex tasks. Machine Learning Tools and Frameworks: 1. TensorFlow: Open-source deep learning framework. 2. PyTorch: Open-source deep learning framework. 3. Scikit-learn: Open-source machine learning library. 4. Keras: High-level neural networks API. Machine learning has numerous applications across industries, including healthcare, finance, marketing, and more. Its ability to learn from data and improve over time makes it a powerful tool for solving complex problems. Thank you...🙂 $BTC $ETH $SOL $PI $AI $XAI $BGB $BNB $DOGE $SHIB $FLOKI $BONK $U2U $WUF $WHY $SUNDOG $PARTI $XRP
SUNDOG-0.18%
BTC+1.82%
Crypto_inside
Crypto_inside
15時
Price action ❌ Technical analysis. 🧐😵‍💫
Price action and technical analysis are two related but distinct concepts in trading and investing. Price Action: 1. Focuses on raw price data: Price action involves analyzing the price movement of a security over time. 2. No indicators or overlays: Price action traders rely solely on the price chart, without using technical indicators or overlays. 3. Emphasis on market structure: Price action traders study the structure of the market, including trends, reversals, and breakouts. Technical Analysis: 1. Uses indicators and overlays: Technical analysis involves using various indicators and overlays, such as moving averages, RSI, and Bollinger Bands, to analyze price data. 2. *Focuses on patterns and trends*: Technical analysis identifies patterns and trends in price data, using indicators and overlays to confirm or contradict the analysis. 3. *Includes various methods*: Technical analysis encompasses various methods, including chart patterns, trend analysis, and momentum analysis. Key Differences: 1. Use of indicators: Price action traders do not use indicators, while technical analysts rely heavily on them. 2. Focus: Price action focuses on raw price data and market structure, while technical analysis focuses on patterns, trends, and indicators. 3. Approach: Price action trading is often more discretionary and subjective, while technical analysis can be more systematic and rule-based. Similarities: 1. Both analyze price data: Both price action and technical analysis involve analyzing price data to make trading decisions. 2. Both aim to identify trends and patterns: Both approaches aim to identify trends, patterns, and other market structures to inform trading decisions. 3. Both require skill and experience: Both price action and technical analysis require skill, experience, and continuous learning to master. In summary, while price action and technical analysis share some similarities, they differ in their approach, focus, and use of indicators. Price action traders rely solely on raw price data and market structure, while technical analysts use indicators and overlays to identify patterns and trends. Thank you...🙂 $BTC $ETH $SOL $PI $XRP $ADA $AI $DOGE $SHIB $FLOKI $BONK $BGB $BNB $U2U $PARTI $WUF $WHY $SUNDOG $DOGS $GEEK
SUNDOG-0.18%
BTC+1.82%

関連資産

人気のある暗号資産
時価総額トップ8の暗号資産です。
最近追加された暗号資産
最も最近追加された暗号資産
同等の時価総額
すべてのBitget資産の中で、時価総額がBonk on ETHに最も近いのはこれらの8資産です。