Bitget App
交易“智”变
行情交易合约跟单BOT理财Web3
用流行病学模型 SIR 简析 Web3 叙事的传播机制

用流行病学模型 SIR 简析 Web3 叙事的传播机制

TechFlow深潮TechFlow深潮2023/12/11 10:21
作者:TechFlow深潮
对于某特定的 Web3 叙事,如 RWA、铭文等,可以观察和统计其叙事传播中的 beta 值和 gamma 值,预测其能否形成长期稳定的共识。

撰文:NingNing

今天在微软 AI 工具新 Bing 的帮助下,做出了一个酷东西:基于流行病学模型 SIR 分析 Web3 叙事的传播机制。

SIR 模型是流行病学中一个经典的数学模型,是最成功、最著名的传染病传播模型之一。

在 SIR 模型中,全体人口被划分成三类人群:

  • 易感人群(S):尚未被传染的人群,但缺乏免疫能力,与感染者接触后容易受到感染。

  • 感染人群(I):已经被感染并具有传播力的患者群体。

  • 康复人群(R):从感染中恢复并且取得免疫的人群。

这个模型不但可以帮助我们理解和预测传染病的传播过程,也可以帮助我们理解和预测 Web3 叙事的传播过程。

关于这点,读过《叙事经济学》的朋友们都懂的。

科普结束,下面我们开始真正的表演:

第一步:初始化条件

易感人群(S)= 某 web3 叙事的潜在目标用户比例

感染人群(I)= 已相信某 web3 叙事的用户比例

康复人群(R)= 已脱敏某 web3 叙事的用户比例

beta = 相信某 web3 叙事的转化率

gamma = 脱敏某 web3 叙事的转化率

我们设定:

S=0.9,I=0.1,R=0.0,beta=0.8,gamma=0.01

第二步:生成 10000 个随机数,从 Scipy 库导入 SIR 模型,再传入我们的初始化参数处理数据。

第三步:重整数据,使用移动气泡图可视化 web3 叙事传播过程。

可视化结果见附图,在以上初始化条件下,~72% 的用户会选择长期相信某 web3 叙事,即加密行业常说的形成稳定「共识」。

此外,我还测试了另外两组初始化条件:

第一组的 web3 叙事特性是高传播率、高脱敏率,初始化条件为:S=0.9,I=0.1,R=0.0,beta=0.8,gamma=0.2。

可视化结果显示,仅 1%~3% 用户会选择长期相信这一组 web3 叙事。

第二组的 web3 叙事特性是中等传播率、低脱敏率,初始化条件为:S=0.9,I=0.1,R=0.0,beta=0.5,gamma=0.01。

可视化结果显示,会有 62%~76% 用户会选择长期相信这一组 web3 叙事。

结论:对于某特定的 Web3 叙事,如 RWA、L2、Web3 游戏、铭文等,我们可以观察和统计其叙事传播中的 beta 值和 gamma 值,预测其能否形成长期稳定的共识。

0

免责声明:文章中的所有内容仅代表作者的观点,与本平台无关。用户不应以本文作为投资决策的参考。

PoolX:锁仓获得新代币空投
不要错过热门新币,且APR 高达 10%+
立即参与!

你也可能喜欢

Virtuals 代理发射开发者指南

Crypto的财富效应只会让好的故事、好的产品、好的团队更容易获得到关注和支持。

深潮2025/02/27 10:56

Pump.fun是杯毒酒,但每个人都忍不住小酌一口

大家都知道有毒,却还是会小酌一口的:Pump式MEME化资产发行方式。

PANews2025/02/27 09:30

Bitget 盘前交易:RedStone(RED)即将推出

Bitget Announcement2025/02/27 09:00

币价腰斩,Meme 退烧,Solana 还能成为「以太坊杀手」吗?

模因是注意力的游戏,当注意力消散,热度也会直线下降。

ForesightNews 独家2025/02/27 08:04